

hps://github.com/beio/ | davide@uninstall.it | hps://uninstall.it/

● Tinker with hardware and embedded systems since 2004.

● Long-time open-source dev (since ~2005 contributed to KDE Plasma and others).

● Fell in love with Elixir in 2017, while creating Astarte Platform.

● Started the AtomVM project in 2017

● I love hiking!

About me (Davide Beio)

https://github.com/bettio/
mailto:davide@uninstall.it
https://uninstall.it/

So… What’s
AtomVM?

Once Upon a Time, the Arduino

● The pioneer of physical computing devices

● Simple to assemble and develop

● Cheap (arduino ~20 €, IC: < 2 €)

● Very limited, yet so powerful

Classic MCU Anatomy (e.g., ATMega328P)

Tiny RAM (2 KiB)

CPU (8-bit, low clock)

GPIOs

A small Computer on a Chip:

Tiny Flash (32 + 1 KiB)

Modern MCU: ESP32 Example

ESP32:

● Cost < 5 €
● Dual Core @ 240MHz
● RAM: ~500KB - 8MB
● Flash: 4MB - 16MB
● Connectivity: WiFi, Bluetooth, etc.
● Lot of GPIOs & integrated peripherals
● Low Power / Baery-friendly

Modern MCU: RP2040 (Pi Pico) Example

Raspberry Pi Pico (RP2040):

● Cost < 5 €
● Dual Core @ 133MHz+
● RAM: 264KiB+
● Flash: 2MB+ (via QSPI)
● GPIOs, Periph. & Programmable I/O (PIO)
● WiFi option
● Low power

Powerful, But Still...Dierent

● Massive leap from classic MCUs

● Still resource-constrained vs. PC/Servers
○ KB/MB RAM, not GB

○ No OS (or RTOS)

○ Development: Mostly C / C++

The C/C++ Experience on MCUs

● Concurrency? Manual, tricky.
● Binary parsing? Boring & dangerous.
● Async? Callback hell, anyone?
● Memory? Did I free that?

The Intricacies of Embedded Communication: LoRa

● LoRa: Long-Range radio, raw bytes to CPU

● Need to implement: routing, security, mesh

● Meshtastic parses them in C++
○ C++: One wrong move... 💣

Clarity in Complexity for LoRa Packets
 def parse(
 <<dest::little-unsigned-32, src::little-unsigned-32, pkt_id::little-unsigned-32,
 hop_start::size(3), via_mqtt::size(1), want_ack::size(1),
 hop_limit::size(3), channel_hash::8, _padding::16, encrypted_data::binary>>) do
 {:ok, %{dest: dest, src: src, packet_id: pkt_id,
 hop_start: hop_start, via_mqtt: int_to_bool(via_mqtt), want_ack: int_to_bool(want_ack),
 hop_limit: hop_limit, channel_hash: channel_hash, encrypted_data: encrypted_data}}
 end

 def parse(_), do: {:error, :failed_meshtastic_parse}

 def decrypt(%{src: src, packet_id: pkt_id, encrypted_data: enc_data} = packet, key) do
iv = <<pkt_id::little-unsigned-64, src::little-unsigned-32, 0::32>>

decrypted = :crypto.crypto_one_time(:aes_128_ctr, key, iv, enc_data, false)
packet
|> Map.put(:data, decrypted)
|> Map.delete(:encrypted_data)

 end

 defp int_to_bool(0), do: false
 defp int_to_bool(1), do: true

Projects like Meshtastic couldn’t leverage these
advantages on such microcontrollers. The
standard BEAM VM wasn’t designed for

environments with only ~500 KiB of available
RAM.

What if we could bring somehow the safety,
concurrency, and productivity of the BEAM

ecosystem to these tiny devices?

AtomVM, A lightweight virtual machine designed to run compiled Erlang and
Elixir code on microcontrollers with limited resources.

● Key Trade-os:
○ Memory First: RAM & Flash are precious

○ Portability: New targets in hours, not days

○ Flexible Requirements: Adaptable core

To the Rescue

Battery powered
CPU: ESP32-S3

Radio: LoRa

Runs
AtomVM

Runs an Elixir app, no native parts
are used
(github.com/bettio/pocketOS/)

Display managed using
https://github.com/atomvm/AtomGL
component.
UI is made with Elixir

Original firmware
in C++

To the Rescue

http://github.com/bettio/pocketOS/
https://github.com/atomvm/AtomGL

● AtomVM powered
● ESP32-C3
● 32-bit RISC V single core @

160 MHz 400 KB of SRAM
● 5μA in deep sleep !

● la machine code is in Erlang
● uses atomvm_esp_adf

component for playing audio
from Erlang code (thanks
Paul)

Popcorn is a library that allows you to run client-side Elixir in
browsers, with JavaScript interoperability.

hps://popcorn.swmansion.com/

https://popcorn.swmansion.com/

Popcorn: How Does it Work?

● Applications on AtomVM, compiled to WebAssembly (emscripten platform)

● Small footprint: the VM is ~200 KiB gzipped

● Popcorn gives you:
○ Tooling: mix popcorn …

○ An easy-to-use library for JavaScript interoperability

○ The full Elixir standard library, not the reduced version used on MCUs

TL;DR: It’s still AtomVM, just with baeries included for the browser

Wise Manul: Simple as:

def deps do

 [

 {:popcorn, "~> 0.1.0"}

]

end

Moving to Real
Hardware

What you Need / Compatible Hardware

Option 1: Espressif

○ ESP32 / ESP32-S2, ESP32-S3 DevKit C -> Wifi, Bluetooth, up to 8 MiB of RAM

○ ESP32-C2/C3 -> Wifi, Bluetooth, up to ~512 KiB or RAM, RISC-V CPU

○ ESP32-C6 -> Wifi, Bluetooth, Thread, ZigBee, RISC-V CPU

○ ESP32-H2, ESP32-C5, ESP32-P4 misc models with dierent features

Disclaimer: Do not buy ESP8266 and other ancient devices pre-ESP32

What you Need / Compatible Hardware

Option 2: RaspberryPi

○ Pico 1/1W (RP2040) -> 264 KiB of RAM (optional Wifi and Bluetooth: W model)

○ Pico 2/W (RP2350) -> 512 KiB of RAM (optional Wifi and Bluetooth: W model)

What you Need / Compatible Hardware

Option 3: STM32

○ Lot of boards, I’m not going to mention them

Disclaimer: Make sure to use a model with enough flash and RAM

Disclaimer 2: I will not further talk about this target, it is not yet “golden”

Incompatible Hardware

● Classic Arduinos like the Uno aren’t

supported
○ But there are some great Arduino boards based

on the ESP32 that work perfectly!

● As a rule of thumb, you’ll want at least 128

KiB of RAM for most projects

● Support for Nordic nRF chips is on our wish

list, but not there yet

Source:
hps://www.reddit.com/r/PallasCats/comments/1d8j3jd/

bol/

What you Need / Accessories

● Minimal hardware setup: just a USB cable (that’s it)

● A serial terminal app (like minicom on Linux/macOS or PuTTY on Windows)
○ This is how you’ll see all the debug, error, and info messages from your device

● A working Elixir install

Big Disclaimer

● Heads up: AtomVM is still pre-v1.0, which means APIs
are not yet stable

● We will break APIs, but the core concepts will remain the
same

● The code here might not work forever, but we keep the
oicial documentation and examples up-to-date

See also: hps://doc.atomvm.org/latest/UPDATING.html
Source:
hps://manulization.com/manuls/magellan.html

https://doc.atomvm.org/latest/UPDATING.html

● Add {:exatomvm, github: "AtomVM/exatomvm", runtime: false}
to mix.exs

● It provides you a number of mix tasks to build your AtomVM project and
flash it

See also: hps://github.com/atomvm/exatomvm

Next Step: exatomvm

https://github.com/atomvm/exatomvm

● Raspberry Pico: never been an issue: just flash the uf2 file as you have
been used to

○ exatomvm handles the uf2 creation

● ESP32:
○ For ESP32, not anymore! The exatomvm installer handles it
○ If you add {:pythonx, "~> 0.4.0", runtime: false}, to your deps, you can just

flash your app without any additional burden
○ No need to download AtomVM, just do mix atomvm.esp32.install

Do I Need a C Toolchain or SDK?

Configuring mix.exs

Just add an atomvm section to mix.exs project function:

 def project do

 [...]

 atomvm: [

 start: Blink, # the module with our start/0 entry point function

 flash_offset: 0x210000

]

 end

The Physical Computing Hello World
defmodule Blink do

 @pin 2

 def start() do

GPIO.set_pin_mode(@pin, :output)

loop(:high)

 end

 defp loop(level) do

GPIO.digital_write(@pin, level)

Process.sleep(200)

loop(toggle(level))

 end

 defp toggle(:high), do: :low

 defp toggle(:low), do: :high

end

See also:
hps://github.com/atomvm/AtomVM
/tree/main/examples

https://github.com/atomvm/AtomVM/tree/main/examples
https://github.com/atomvm/AtomVM/tree/main/examples

● GPIO stands for General Purpose Input/Output.

● Think of them as simple digital pins that can be either an input or an output

● They can be set to high (e.g., 3.3V) or low (0V / Ground).

For our LED, this means it’s either fully on or fully o. No fading.

What’s a GPIO?

Manul now only understands :high and :low

● Add {:exatomvm, github: "AtomVM/exatomvm", runtime: false}
to mix.exs ✓

● Write Elixir/Erlang (like always!) ✓
● (Behind the scenes: compile, like always!)
● (Behind the scenes: pack, mix.atomvm.packbeam -> myapp.avm)
● Flash, run one command: (e.g. mix atomvm.esp32.flash)

Remember: AtomVM runs unmodified BEAM file, so any language that runs on
the BEAM, will run also on AtomVM.

The AtomVM Workflow

Demo
HONESTLY I WILL NOT
DO A BLINKING LED
DEMO. TRUST ME IT
WORKS. I WILL NOT
EVEN TRY SHOWING A
MICROSCOPIC LED TO
THE AUDIENCE. IF I
BRING BOARDS AND
ELECTRONICS ON
PUBLIC TRANSPORTS I
MIGHT BE
MISIDENTIFIED AS A
TERRORIST. DEMOS
ALWAYS FAIL

● As soon as the device is flashed use minicom for reading IO.puts and
IO.inspect output

● Do not try using minicom while flashing the device
● It may require some configuration

Time for minicom -D /dev/ttyACM0

Do not

1. Never mess with “GND” (the ground): if you connect GND pin to something that
is not ground/0V you are likely going to fry your device

2. Respect polarity: components like LEDs and some capacitors have positive and
negative sides: connecting them backward = ☠

3. Don’t mix voltage levels: sending 5V into a 3.3V pin can permanently damage the
chip unless the pin is explicitly '5V tolerant'

4. Always connect an antenna: before powering on a radio. Without it, the
transmier can be damaged

Do: Double check all your connections before powering up your device!

Circuits Pro-tips

Goal: We want to know when a buon is pressed

● The naive way is "polling": constantly looping to check the buon’s GPIO pin
○ The problem? This keeps the CPU busy doing nothing and drains the baery.

This is called "busy-waiting"

● A beer way: Interrupts
○ A hardware interrupt tells the CPU to pause its current task and handle

something important *right now*
○ In AtomVM, we translate these hardware interrupts into standard Elixir

messages

Handling a Buon Press

First, we configure the GPIO as an input and tell it to trigger an interrupt on a
'falling edge' (when the buon is pressed):

:gpio.set_direction(gpio, gpio_num, :input)

:gpio.set_int(gpio, gpio_num, :falling)

The hardware event is safely delivered to your process’s mailbox as a message.
No callbacks, no polling—just the actor model you already know and love. e.g.
let’s add to our GenServer:

def handle_info({:gpio_interrupt, gpio_num}, state) do

 IO.puts “Button pressed”

 {:noreply, State}

end

Interrupts in Elixir

Great, I’m blinking an LED and reading a
buon. Now what?

Source: hps://www.flickr.com/photos/tambako/31556104335/in/photostream/

https://www.flickr.com/photos/tambako/31556104335/in/photostream/

Peripherals!

● Connecting to the outside world: Peripherals!
○ I2C

○ SPI

○ UART

● Most sensors, displays, and other modules you can buy use one of these

standard communication protocols (or "buses")

● Usually, a bus lets you connect multiple devices to the same set of GPIO

pins

A Quick Guide to Peripheral Buses

● I²C: A 2-wire bus. Great for connecting many dierent devices (each has a unique address) at
slow-to-medium speeds. It’s synchronous.

○ Pay aention to pull-up resistors when buying breakout boards (is included or not?)

● SPI: A 4-wire bus (or more). Faster than I²C, great for things like displays and SD cards. It’s also
synchronous.

○ Requires an additional select wire for each peripheral

● UART: A simple 2-wire, point-to-point connection. Think of it as a simple serial port. It’s
asynchronous.

Native vs Elixir Components

● AtomVM APIs such as spi, i2c, gpio and other related modules, allow

building libraries for quite complex peripherals

● For high-performance or very low-level hardware access, you might need

more speed than pure Elixir can provide

● For this, AtomVM supports native components (NIFs and Ports), just like

the main BEAM VM

● The catch: using native components requires a custom AtomVM build

using the device’s SDK (like the ESP-IDF)

AtomGL

● AtomGL is the component for displaying stu on screen
● Displays any list of items:

{:text, 16, 16, :default16px, 0xFFFFFF, 0x404040, title},
{:image, div(320 - 64, 2), div(240 - 64, 2), 0x404040, error_image}

● There is an additional avm_scene library that provides some scaolding for managing
displayed scene, using a gen_server like approach:

def handle_info(:show_foo, %{width: width, height: height} = state)
do

{:noreply, state, [{:push, items}]}
end

See also: hps://github.com/atomvm/atomgl

https://github.com/atomvm/atomgl

Audio? atomvm_esp_adf

● Provides building blocks for building simple audio pipelines, e.g.

● Leverage existing esp-idf library for decoding audio formats such as mp3

See also hps://github.com/pguyot/atomvm_esp_adf/

https://github.com/pguyot/atomvm_esp_adf/

What about I in IoT?

● There is a handy network module

● AtomVM has support for gen_tcp, gen_udp and socket

● http_server and ahttp_client modules

● mdns for finding your device on the network

See also: hps://doc.atomvm.org/latest/network-programming-guide.html

https://doc.atomvm.org/latest/network-programming-guide.html

Seing up Wi-Fi
self_pid = self()

config = [

 sta: [

 ssid: :esp.nvs_get_binary(:atomvm, :sta_ssid, "myssid"),

 psk: :esp.nvs_get_binary(:atomvm, :sta_psk, "mypsk"),

 connected: fn -> send(self_pid, :connected) end,

 got_ip: fn ip_info -> send(self_pid, {:ok, ip_info}) end,

 disconnected: fn -> send(self_pid, :disconnected) end

]

]

:network.start(config)

The built-in hp_server module makes it easy to spin up a web server on your device:

router = [

 {"*", __MODULE__, []}

]

:http_server.start_server(8080, router)

[...]

def handle_req("GET", [], conn) do

 body =

 "<html>\n" <> [...]

 :http_server.reply(200, body, conn)

end

Handling HTTP Requests

Notes / Dierences

Quick Stats & Nerves Comparison

AtomVM:

● AtomVM, hello world footprint: 512 KiB of flash, 32 KiB of RAM
● Targets smaller MCUs (no Linux / no OS at all)

Nerves:

● Awesome on capable devices (RPi, etc.), such as those running Linux

Big Caveat

● Some features, standard modules or functions are missing (e.g. digraph

module)

● But exatomvm will do its best to tell you if you are using any missing

feature, so you can quickly iterate before flashing your application

● They are designed to be wrien directly to flash memory, no filesystem

needed

● Instead of several .beam files, everything is packed together with an .avm

file bundles all your compiled .beam files and any assets (like images or

config files) into a single package

● They all start with #!/usr/bin/env AtomVM
○ (Possible idea: making CLI tools with AtomVM)

● Executable .avm have a startup module

.avm files

Extensions

AtomVM implements some extensions (most of them are prefixed with atomvm

or avm):

● :atomvm.read_priv/2 ->reads a binary file stored in a loaded .avm file

● :atomvm.posix_* -> posix functions, they mimic unistd.h ones

Closing Words on
AtomVM

New: Erlang Distribution (thanks Paul) and other 40+ additions

Soon:

● Big Integers (WIP, limited to 256-bit)
● Bitstrings (next release!)
● JIT & Ahead of Time

Future:

● More devices & peripherals (Zephyr devices, Bluetooth, Zigbee/Thread, etc…)
● Even beer tooling & DevX
● Stable APIs (path to 1.0)

What’s Next

● Stable Release: v0.6.6: hps://github.com/atomvm/AtomVM/releases
○ Up to OTP-27, OTP-28 support has not been backported yet

○ Pre-build binaries available

○ Well tested, focused on stability

● Development branch: main
○ hps://github.com/atomvm/AtomVM/tree/main

○ Moving target, still prey high quality

Releases

https://github.com/atomvm/AtomVM/releases
https://github.com/atomvm/AtomVM/tree/main

● Any kind of contribution is welcome
○ Artists included, we are looking for artworks for our site and documentation :D

● Feedbacks and issues are valuable
○ Is AtomVM behaving somehow in a dierent way than the BEAM?

○ Are you missing any feature?

○ Is documentation or tooling usage unclear?

○ Did you notice any crash?

● Code contributions in C, Erlang, Elixir and Gleam are appreciated
○ Improvements to our documentation as well

Contributing

Join Us

hps://atomvm.org/

Discord: hps://discord.gg/QA7fNjm9Nw

Telegram: hps://t.me/atomvm

Documentation: hps://doc.atomvm.org/

https://atomvm.org/
https://discord.gg/QA7fNjm9Nw
https://t.me/atomvm
https://doc.atomvm.org/

Thanks

