e AtomVM

About me (Davide Bettio)

https://github.com/bettio/ | davide@uninstall.it I https://uninstall.it/

e Tinker with hardware and embedded systems since 2004.

e Long-time open-source dev (since ~2005 contributed to KDE Plasma and others).
e Fellinlove with Elixirin 2017, while creating Astarte Platform.

e Started the AtomVM projectin 2017

e ||ove hiking!

AtomVM

https://github.com/bettio/
mailto:davide@uninstall.it
https://uninstall.it/

So.. What's
AtomVM?

=5 AtomVM

Once Upon a Time, the Arduino

e The pioneer of physical computing devices
e Simple to assemble and develop i e
e Cheap (arduino ~20 €, IC: < 2 €)

e \erylimited, yet so powerful

m. Qﬂ B » > & 7
‘Q(D 1 a ‘";?‘ 1Y -
- ; =
; I
[]

AtomVM

Classic MCU Anatomy (e.g., ATMega328P)

A small Computer on a Chip:

Tiny Flash (32 + 1 KiB)

CPU (8-bit, low clock)

Tiny RAM (2 KiB)

GPIOs

AtomVM

Modern MCU: ESP32 Example

ESP32:

Cost<5€

Dual Core @ 240MHz

RAM: ~500KB - 8MB

Flash: 4MB - 1T6MB

Connectivity: WiFi, Bluetooth, etc.
Lot of GPIOs & integrated peripherals
Low Power / Battery-friendly

AtomVM

ESP32-DevKitC & ESPRESSIF

GND
[] GPI023 [VSPI_MOSI
& ESPRESSIF ® CRIDD
ESP32-WROOM GPIOL UOTXD
GPI03 | UORXD
GPI1021
GND
GPIO19 [VSPI_MISO, OD/IE
GPIO18
GPI05 L VSPLSS | spro [OD/IE/WPU]
GPI017 . OD/IE
GP1016 | OD/IE
GPIO4 | RTC . ADC2 0 | TOUCHO . ODJIE/WPD
GPIO0 ADC2_1 | TOUCH1 BOOT _ OD/IE/WPU
GPI02 ADC2_2 | TOUCH2 . OD/IE/WPD
GPIO15 ADC2_3 | TOUCH3 BA0L)
oo = —— !
8 GPI07 _JT) !
¢) GPIO6 JE(s ¢ 1

3V3

[Py EN

0D/ID SWP] ADC1 0 GPI036

oD/ID SWN I ADC1 3 GPI039

OD/ID BWDET 1 | ADC1 6 GP1034

OD/ID TWPET2| ADC1_7 GPI035

OD/ID 1 32K XP [TOUCH9 . ADCL 4 GPI032
OD/ID 1 32K XN [TOUCH8 | ADC1_5 GPI033
pac.1 @NEE GPI025
LYY Bl ADC2_9 GPI026
OD/ID | TOUCH7 [ADC2 7 GPI027
(I TOUCH6 | ADC2_6 GPI014
OD/IE/WPD [VDD_FLASH SHSPISMISO IR} (TR TOUCHS [ADC2_5 GPI012
GND

CEEDCETEED MTeK C2_4 | TOUCH4 | RTC | GPIO13

D2 GPIO9
D3 GPI010
(I GPIO11

5V0

€€ TE SE ¥E NA dA N3 EAE

AS OWD €0 2a €T ANO TT ¥T LZ 9T ST

o e =

~\,/— PWM Capable Pin
ESP32 Specs —_— GPIO Input Only
; P S @I GPIO Input and Output

32-bit Xtensa® dual-core @240 MHz DAC_X Digital-to-Analog Converter WPU: Weak Pull-up (Internal)
Wi-Fi IEEE 802.11b/g/n 2.4 GHz DEBUG JTAG for Debugging ;3(® RTCPower Domain (VDD3P3_RTC) WPD: Weak Pull-down (Internal)
Bluetooth 4.2 BR/EDR and BLE FLASH) External Flash Memory (SPI) @D Ground B oy ladintans
520 KB SRAM (16 KB for cache) Analog.to-Digital Converter G Power Rails (3v3.and 51) ID: Input Disabled (After Reset)

Touch Sensor Input Channel | PinShared with the Flash Memory OE: Output Enable (After Reset)
448 KB ROM @TTED Other Related Functions . Can't be used as regular GPIO 0D: Output Disabled (After Reset)
34 GPIOs, 4x SPI, 3x UART, 2x 12C Serial for Debug/Programming
2x 12S, RMT, LED PWM, 1 host SD/eMMC/SDIO Arduino Related Functions

1 slave SDIO/SPI, TWAI®, 12-bit ADC, Ethernet Strapping Pin Functions

Modern MCU: RP2040 (Pi Pico) Example

Raspberry Pi Pico (RP2040):

Cost<5€

Dual Core @ 133MHz+

RAM: 264KiB+

Flash: 2MB+ (via QSPI)

GPIOs, Periph. & Programmable /0 (PIO)
WiFi option

Low power

=5 AtomVM

Powerful, But Still...Different

e Massive leap from classic MCUs

e Still resource-constrained vs. PC/Servers

o KB/MBRAM, not GB
o NoOS (or RTOS)
o Development: Mostly C/ C++

AtomVM

The C/C++ Experience on MCUSs

Concurrency? Manual, tricky.
Binary parsing? Boring & dangerous.
Async? Callback hell, anyone?

Mery? Did I free that?

%

M

- o AtomVM

The Intricacies of Embedded Communication: LoRa

e [oORa: Long-Range radio, raw bytes to CPU e
e Need toimplement: routing, security, mesh '

e Meshtastic parsesthemin C++

o C++:0newrong move... @

o

AtomVM

Clarity in Complexity for LoRa Packets

def parse(
<<dest::little-unsigned-32, src::little-unsigned-32, pkt_id::little-unsigned-32,
hop_start::size(3), via_mgtt::size(1l), want_ack::size(1),
hop_limit::size(3), channel_hash::8, _padding::16, encrypted_data::binary>>) do
{1:0k, %idest: dest, src: src, packet_id: pkt_id,
hop_start: hop_start, via_mqgtt: int_to_bool(via_mqgtt), want_ack: int_to_bool(want_ack),
hop_limit: hop_limit, channel_hash: channel_hash, encrypted_data: encrypted_datat?
end

def parse(_), do: i:error, :failed_meshtastic_parse}

def decrypt(%isrc: src, packet_id: pkt_id, encrypted_data: enc_data} = packet, key) do
iv = <<pkt_id::little-unsigned-64, src::little-unsigned-32, 0::32>>

decrypted = :crypto.crypto_one_time(:aes_128 _ctr, key, iv, enc_data, false)
packet

|> Map.put(:data, decrypted)

|> Map.delete(:encrypted_data)
end

defp int_to_bool(0), do: false
defp int_to_bool (1), do: true

AtomVM

Projects like Meshtastic couldn't leverage these
advantages on such microcontrollers. The
standard BEAM VM wasn’t designed for
environments with only ~500 KiB of available
RAM.

AtomVM

What if we could bring somehow the safety,
concurrency, and productivity of the BEAM
ecosystem to these tiny devices?

 SO07 700N,

- (y
- 9 “ u' s
' IR i / '
S oy ‘.r,v' ”““;."’»‘”/
‘

AtomVM

To the Rescue

AtomVM, A lightweight virtual machine designed to run compiled Erlang and

Elixir code on microcontrollers with limited resources.

e Key Trade-offs:

o Memory First: RAM & Flash are precious
o Portability: New targetsin hours, not days

o Flexible Requirements: Adaptable core

AtomVM

To the Rescue

Battery powered
in C++ CPU: ESP32-S3
i Radio: LoRa

Runs
AtomVM

Original firmware

| LILYGO : :
Display managed using

https://github.com/atomvm/AtomGL
component.
Ul is made with Elixir

; Delivered to
Broadcast

Last Rx SNR: 0.000000
Last Rx RSSI: 0

Runs an Elixir app, no native parts
are used
(github.com/bettio/pocketOS/)

— L "_YGO,Q T-’fe{/b,o,aﬂrij E S LILYGO® T-Keyboard : Ato mVM

http://github.com/bettio/pocketOS/
https://github.com/atomvm/AtomGL

by multiplié

[]
a mac 'ne The Useless Box : Reloaded

e AtomVM powered

e ESP32-C3

e 32-bit RISC V single core @
160 MHz 400 KB of SRAM

e JSUAin deep sleep'!

KEY FEATURES

= ! 1 « Over 500 unique sound effects & reactions
« Unlimited choreography combinations - never the same
twice

la machine code is in Erlang =
e usesatomvm_esp_adf E
component for playing audio | el e

from E rl a ng COd e (th a n kS 3 .‘ F « Exceptional battery life: three months on a single charge
Paul) % Bl

OIO

L] Popcorn

Popcorn is a library that allows you to run client-side Elixir in
browsers, with JavaScript interoperability.

https://popcorn.swmansion.com/

AtomVM

https://popcorn.swmansion.com/

Popcorn: How Does it Work?

e Applications on AtomVM, compiled to WebAssembly (emscripten platform)
e Small footprint: the VM is ~200 KiB gzipped
e Popcorn gives you:

o Tooling:mix popcozxn ..

o Aneasy-to-use library for JavaScript interoperability

o The fullElixir standard library, not the reduced version used on MCUs

TL;DR: It’s still AtomVM, just with batteries included for the browser

AtomVM

Simple as:

Wise Manul:

def deps do
[

{:popcorn, "~> 0.1.0"%

Bame of life demo

A cellular automaton simulation written in Elixir. The entire Ul is controlled by Elixir with
no additional JavaScript. Every cell is distinct Elixir process. Click cells to toggle them,
use the glider preset, or start the simulation.

‘ Start simulation H Reset H Use glider preset }

OO0
OO e
OAOOCee e

AtomVM

This live demo showcases Elixir's IEx — running
right here in the browser. Write your own code and
make it happen, or click on the buttons to run
examples that we've prepared for you.

See the repo Read the docs

Interactive Elixir (1.17.3) - press Ctrl+C to exit (type h()

NTER f or help)
avm_iex (1)> :0k

:ok
avm_iex(2)> hi = £fn -> IO.inspect (self ()) end

#Function<0.23/1 in :erl_eval.avmo_expr/6>
avm_iex (3)> Enum.each(0..3, fn _ -> spawn(hi) end)

#PID<0.39.0>
#PID<0.40.0>
#PID<0.41.0>
#PID<0.42.0>
:o0k

avm_iex (4)>

Example: Sort Example: Processes

AtomVM

Moving to Real
Hardware

What you Need / Compatible Hardware

Option 1: Espressif

o ESP32/ESP32-S2, ESP32-S3 DevKit C — Wifi, Bluetooth, up to 8 MiB of RAM
o ESP32-C2/C3 — Wifi, Bluetooth, up to ~512 KiB or RAM, RISC-V CPU

o ESP32-Cb6 — Wifi, Bluetooth, Thread, ZigBee, RISC-V CPU

o ESP32-H2, ESP32-C5, ESP32-P4 misc models with different features

Disclaimer: Do not buy ESP8266 and other ancient devices pre-ESP32

AtomVM

What you Need / Compatible Hardware

Option 2: RaspberryPi

o Pico1/1W (RP2040) - 264 KiB of RAM (optional Wifi and Bluetooth: W model)
o Pico2/W (RP2350) — 512 KiB of RAM (optional Wifi and Bluetooth: W model)

AtomVM

What you Need / Compatible Hardware

Option 3: STM32

o Lotofboards, I'm not going to mention them

Disclaimer: Make sure to use a model with enough flash and RAM

Disclaimer 2: [will not further talk about this target, it is not yet “golden”

AtomVM

Incompatible Hardware Source:

https://www.reddit.com/r/PallasCats/comments/1d8j3jd/

PR e

e C(lassic Arduinos like the Uno aren’t

supported

o Butthere are some great Arduino boards based
on the ESP32 that work perfectly!

e Asaruleof thumb, you'll want at least 128
KiB of RAM for most projects
e Support for Nordic nRF chips is on our wish

list, but not there yet

What you Need / Accessories

e Minimal hardware setup: just a USB cable (that’s it)

e A serial terminal app (like minicomon Linux/macOS or PuTTY on Windows)
o Thisishow you’'ll see all the debug, error, and info messages from your device

e A working Elixir install

AtomVM

Big Disclaimer

e Heads up: AtomVM is still pre-v1.0, which means APIs
are not yet stable
e We will break APIs, but the core concepts will remain the

same
e The code here might not work forever, but we keep the

official documentation and examples up-to-date

Source :

T See alsor https://doc.atomvm.org/latest/UPDATING.html

AtomVM

https://doc.atomvm.org/latest/UPDATING.html

Next Step: exatomvm

e Add{:exatomvm, github: "AtomVM/exatomvm", runtime: false}
tomix.exs

e [t provides youanumber of mix tasks to build your AtomVM project and
flashit

See also: https://github.com/atomvm/exatomvm

AtomVM

https://github.com/atomvm/exatomvm

Do | Need a C Toolchain or SDK?

e Raspberry Pico: never been an issue: just flash the uf2 file as you have

been used to
o exatomvm handles the uf2 creation

e ESP32:

o For ESP32, not anymore! The exatomvminstaller handles it

o Ifyouadd{:pythonx, "~> 0.4.0", runtime: false}, toyourdeps, you can just
flash your app without any additional burden

o Noneedtodownload AtomVM, justdomix atomvm.esp32.install

AtomVM

Configuring mix.exs
Just add an atomvm section to mix.exs project function:

def project do
[...]

atomvm: [
start: Blink, # the module with our start/0 entry point function
flash _offset: 0x210000

end

AtomVM

The Physical Computing Hello World

defmodule Blink do
@pin 2
def start() do
GPIO.set_pin_mode(@pin, :output)
loop(:high)

end

See also:
https://github.com/atomvm/AtomVM
[tree/main/examples

defp loop(level) do

GPIO.digital_write(@pin, level)

Process.sleep(200)
loop(toggle(level))
end
defp toggle(:high), do: :low
defp toggle(:low), do: :high

AtomVM

end

https://github.com/atomvm/AtomVM/tree/main/examples
https://github.com/atomvm/AtomVM/tree/main/examples

What's a GPIO?

e GPIO stands for General Purpose Input/Output.
e Think of them as simple digital pins that can be either an input or an output

e They can be set to high (e.g., 3.3V) or low (0V / Ground).

For our LED, this means it's either fully on or fully off. No fading.

AtomVM

AtomVM

The AtomVVM Workfiow

e Addi:exatomvm, github: "AtomVM/exatomvm", runtime: false}

tomix.exs

e Write Elixir/Erlang (like always!) v

e Flash, runone command: (e.g.mix atomvm.esp32.flash)

Remember: AtomVM runs unmodified BEAM file, so any language that runs on
the BEAM, will run also on AtomVM.

AtomVM

Demo

HONESTLY | WILLNOT
DO A BLINKING LED
DEMO. TRUSTME IT
WORKS. | WILLNOT
EVEN TRY SHOWING A
MICROSCOPIC LED TO
THE AUDIENCE. IF |
BRING BOARDS AND
ELECTRONICS ON
PUBLIC TRANSPORTS |
MIGHT BE
MISIDENTIFIED AS A
TERRORIST. DEMOS

= ALWAYS FAIL
=5 AtomVM

Time forminicom -D /dev/ttyACMO

e Assoon as the device is flashed use minicom for reading I0.puts and
I0.1inspect output

e Donottryusingminicom while flashing the device
e [t mayrequire some configuration

AtomVM

Circuits Pro-tips

Do not

1. Never mess with “GND” (the ground): if you connect GND pin to something that
is not ground/Q0V you are likely going to fry your device
2. Respect polarity: components like LEDs and some capacitors have positive and

negative sides: connecting them backward =

3. Don’t mix voltage levels: sending 5V into a 3.3V pin can permanently damage the
chip unless the pinis explicitly 5V tolerant’

4. Always connect an antenna: before powering on a radio. Without it, the
transmitter can be damaged

Do: Double check all your connections before powering up your devicel

AtomVM

Handling a Button Press

Goal: We want to know when a button is pressed

e Thenaive way is “polling”: constantly looping to check the button’s GPIO pin
o The problem? This keeps the CPU busy doing nothing and drains the battery.
Thisis called "busy-waiting”

e Abetter way: Interrupts
o Ahardware interrupt tells the CPU to pause its current task and handle
something important *right now*
o In AtomVM, we translate these hardware interrupts into standard Elixir
messages

AtomVM

Interrupts in Elixir

First, we configure the GPIO as an input and tell it to trigger an interrupt on a
‘falling edge' (when the button is pressed):

:gpio.set_direction(gpio, gpio_num, :input)

:gpio.set_int(gpio, gpio_num, :falling)

The hardware event is safely delivered to your process’s mailbox as a message.
No callbacks, no polling—just the actor model you already know and love. e.g.
let’s add to our GenServer:

def handle_info({:gpio_interrupt, gpio_num}, state) do
I0.puts “Button pressed”
i:noreply, State}

AtomVM

end

Great, I’'m blinking an LED and reading a
button. Now what?

Source: https://www.flickr.com/photos/tambako/31556104335/in/photostream/

AtomVM

https://www.flickr.com/photos/tambako/31556104335/in/photostream/

Peripherals!

e Connecting to the outside world: Peripherals!

o 12C
o SPI
o UART

e Most sensors, displays, and other modules you can buy use one of these
standard communication protocols (or "buses”)
e Usually, a buslets you connect multiple devices to the same set of GPIO

pins

AtomVM

A Quick Guide to Peripheral Buses

e I2C: A 2-wire bus. Great for connecting many different devices (each has a unique address) at

slow-to-medium speeds. It’s synchronous.
o Pay attention to pull-up resistors when buying breakout boards (is included or not?)

e SPI: A 4-wire bus (or more). Faster than I12C, great for things like displays and SD cards. It's also
synchronous.

o Requires an additional select wire for each peripheral

e UART: Asimple 2-wire, point-to-point connection. Think of it as a simple serial port. It's
asynchronous.

AtomVM

ESP32-DevKitC & ESPRESSIF

GND
[] GPI023 [VSPI_MOSI
& ESPRESSIF ® CRIDD
ESP32-WROOM GPIOL UOTXD
GPI03 | UORXD
GPI1021
GND
GPIO19 [VSPI_MISO, OD/IE
GPIO18
GPI05 L VSPLSS | spro [OD/IE/WPU]
GPI017 . OD/IE
GP1016 | OD/IE
GPIO4 | RTC . ADC2 0 | TOUCHO . ODJIE/WPD
GPIO0 ADC2_1 | TOUCH1 BOOT _ OD/IE/WPU
GPI02 ADC2_2 | TOUCH2 . OD/IE/WPD
GPIO15 ADC2_3 | TOUCH3 BA0L)
oo = —— !
8 GPI07 _JT) !
¢) GPIO6 JE(s ¢ 1

3V3

[Py EN

0D/ID SWP] ADC1 0 GPI036

oD/ID SWN I ADC1 3 GPI039

OD/ID BWDET 1 | ADC1 6 GP1034

OD/ID TWPET2| ADC1_7 GPI035

OD/ID 1 32K XP [TOUCH9 . ADCL 4 GPI032
OD/ID 1 32K XN [TOUCH8 | ADC1_5 GPI033
pac.1 @NEE GPI025
LYY Bl ADC2_9 GPI026
OD/ID | TOUCH7 [ADC2 7 GPI027
(I TOUCH6 | ADC2_6 GPI014
OD/IE/WPD [VDD_FLASH SHSPISMISO IR} (TR TOUCHS [ADC2_5 GPI012
GND

CEEDCETEED MTeK C2_4 | TOUCH4 | RTC | GPIO13

D2 GPIO9
D3 GPI010
(I GPIO11

5V0

€€ TE SE ¥E NA dA N3 EAE

AS OWD €0 2a €T ANO TT ¥T LZ 9T ST

o e =

~\,/— PWM Capable Pin
ESP32 Specs —_— GPIO Input Only
; P S @I GPIO Input and Output

32-bit Xtensa® dual-core @240 MHz DAC_X Digital-to-Analog Converter WPU: Weak Pull-up (Internal)
Wi-Fi IEEE 802.11b/g/n 2.4 GHz DEBUG JTAG for Debugging ;3(® RTCPower Domain (VDD3P3_RTC) WPD: Weak Pull-down (Internal)
Bluetooth 4.2 BR/EDR and BLE FLASH) External Flash Memory (SPI) @D Ground B oy ladintans
520 KB SRAM (16 KB for cache) Analog.to-Digital Converter G Power Rails (3v3.and 51) ID: Input Disabled (After Reset)

Touch Sensor Input Channel | PinShared with the Flash Memory OE: Output Enable (After Reset)
448 KB ROM @TTED Other Related Functions . Can't be used as regular GPIO 0D: Output Disabled (After Reset)
34 GPIOs, 4x SPI, 3x UART, 2x 12C Serial for Debug/Programming
2x 12S, RMT, LED PWM, 1 host SD/eMMC/SDIO Arduino Related Functions

1 slave SDIO/SPI, TWAI®, 12-bit ADC, Ethernet Strapping Pin Functions

Native vs Elixir Components

e AtomVM APIs such as spi, i2¢, gpio and other related modules, allow
building libraries for quite complex peripherals

e For high-performance or very low-level hardware access, you might need
more speed than pure Elixir can provide

e For this, AtomVM supports native components (NIFs and Ports), just like
the main BEAM VM

e The catch: using native components requires a custom AtomVM build
using the device’s SDK (like the ESP-IDF)

AtomVM

AtomGL

e AtomGLis the component for displaying stuff on screen
e Displays any list of items:

$:text, 16, 16, :defaultlépx, OxFFFFFF, 0x404040, title},
$:image, div (320 - 64, 2), div(240 - 64, 2), 0x404040, error_image}

e Thereisanadditional avm_scene library that provides some scaffolding for managing
displayed scene, usinga gen_server like approach:

gef handle_info(:show_foo, %3iwidth: width, height: height} = state)
o)

3 :noreply, state, [i:push, itemsi}]}
end

See also: https://github.com/atomvm/atomal

AtomVM

https://github.com/atomvm/atomgl

Audio? atomvm_esp_adf

e Provides building blocks for building simple audio pipelines, e.g.

e |everage existing esp-idf library for decoding audio formats such as mp3

See also https://github.com/pguyot/atomvm esp adf/

AtomVM

https://github.com/pguyot/atomvm_esp_adf/

What about | inloT?

e Thereisahandy network module
e AtomVM has support for gen_tcp, gen_udp and socket
e http_serverandahttp_client modules

e mdns for finding your device on the network

See also: https://doc.atomvm.org/latest/network-programming-guide.html

AtomVM

https://doc.atomvm.org/latest/network-programming-guide.html

Setting up Wi-Fi

self_pid = self()
config = [
sta: [
ssid: :esp.nvs_get_binary(:atomvm, :sta_ssid, "myssid"),
psk: :esp.nvs_get_binary(:atomvm, :sta_psk, "mypsk"),
connected: fn -> send(self_pid, :connected) end,
got_ip: fn ip_info -> send(self_pid, {:o0k, ip_info}) end,

disconnected: fn -> send(self_pid, :disconnected) end

]

:network.start(config)

AtomVM

Handling HT TP Requests
The built-in http_server module makes it easy to spin up a web server on your device:

router = [
$"%", __MODULE__, []%
]
:http_server.start_server (8080, router)
[...]
def handle_req("GET", [], conn) do
body =
"<html>\n" <> [...]
:http_server.reply (200, body, conn)

end

AtomVM

Notes / Differences

Quick Stats & Nerves Comparison

AtomVM:

e AtomVM, hello world footprint: 512 KiB of flash, 32 KiB of RAM
e Targets smaller MCUs (no Linux / no OS at all)

Nerves:

e Awesome on capable devices (RPi, etc.), such as those running Linux

AtomVM

Big Caveat

e Some features, standard modules or functions are missing (e.g. digraph
module)
e Butexatomvmwilldoits best to tell you if you are using any missing

feature, so you can quickly iterate before flashing your application

AtomVM

.avm files

e They are designed to be written directly to flash memory, no filesystem
needed

e Instead of several .beam files, everything is packed together with an .avm
file bundles all your compiled . beam files and any assets (like images or
config files) into a single package

e Theyallstartwith#!/usr/bin/env AtomVM

o (Possible idea: making CLI tools with AtomVM)
e [Executable .avm have a startup module

AtomVM

Extensions

AtomVM implements some extensions (most of them are prefixed with atomvm

oravm):

e :atomvm.read_priv/2 —»reads a binary file stored in a loaded .avm file

e :atomvm.posix_* — posix functions, they mimic unistd.h ones

AtomVM

Closing Words on
AtomVM

What's Next

New: Erlang Distribution (thanks Paul) and other 40+ additions
Soon:

e BigIntegers (WIP, limited to 256-bit)
e Bitstrings (next release!)
e JIT&AheadofTime

Future:

e More devices & peripherals (Zephyr devices, Bluetooth, Zigbee/Thread, etc...)
e Even better tooling & DevX
e Stable APIs (pathto 1.0)

AtomVM

Releases

e Stable Release: v0.6.6: https:/github.com/atomvm/AtomVM/releases

o UptoOTP-27, OTP-28 support has not been backported yet
o Pre-build binaries available
o Well tested, focused on stability

e Development branch: main

o https:/qithub.com/atomvm/AtomVM/tree/main

o Moving target, still pretty high quality

AtomVM

https://github.com/atomvm/AtomVM/releases
https://github.com/atomvm/AtomVM/tree/main

Contributing

e Any kind of contribution is welcome
o Artistsincluded, we are looking for artworks for our site and documentation :D
e Feedbacks andissues are valuable

o Is AtomVM behaving somehow in a different way than the BEAM?
o Areyou missing any feature?

o Isdocumentation or tooling usage unclear?

o Didyou notice any crash?

e Code contributionsin C, Erlang, Elixir and Gleam are appreciated

o Improvements to our documentation as well

AtomVM

Join Us

https://atomvm.org/

Discord: https://discord.gg/QA7fNjmINw

Telegram: https://t.me/atomvm

Documentation: https:/doc.atomvm.org/

AtomVM

https://atomvm.org/
https://discord.gg/QA7fNjm9Nw
https://t.me/atomvm
https://doc.atomvm.org/

Thanks

