

hps://github.com/beio/ | davide@uninstall.it | hps://fosstodon.org/@beio

● Tinker with hardware and embedded systems since 2004.

● Long-time open-source dev (since ~2005 contributed to KDE Plasma and others).

● Fell in love with Elixir in 2017, while creating Astarte Platform.

● Started the AtomVM project in 2017

● Currently work at SECO Mind (formerly Ispirata)

● I love hiking!

About me (Davide Beio)

https://github.com/bettio/
mailto:davide@uninstall.it
https://fosstodon.org/@bettio

So… What’s
AtomVM?

Once Upon a Time, the Arduino

● The father of physical computing devices

● Simple to assemble and develop

● Cheap (arduino ~20 €, IC: < 2 €)

● Very limited, yet so powerful

Classic MCU Anatomy (e.g., ATMega328P)

Tiny RAM (2 KiB)

CPU (8-bit, low clock)

GPIOs

A small Computer on a Chip:

Tiny Flash (32 + 1 KiB)

Modern MCU: ESP32 Example

ESP32:

● Cost < 5 €
● Dual Core @ 240MHz
● RAM: ~500KB - 8MB
● Flash: 4MB - 16MB
● Connectivity: WiFi, Bluetooth, etc.
● Lot of GPIOs & integrated peripherals
● Low Power / Baery-friendly

Modern MCU: RP2040 (Pi Pico) Example

Raspberry Pi Pico (RP2040):

● Cost < 5 €
● Dual Core @ 133MHz+
● RAM: 264KiB+
● Flash: 2MB+ (via QSPI)
● GPIOs, Periph. & Programmable I/O (PIO)
● WiFi option
● Low power

Powerful, But Still...Dierent

● Massive leap from classic MCUs

● Still resource-constrained vs. PC/Servers
○ KB/MB RAM, not GB

○ No OS (or RTOS)

○ Development: Mostly C / C++

The C/C++ Experience on MCUs

● Concurrency? Manual, tricky.
● Binary parsing? Boring & dangerous.
● Async? Callback hell, anyone?
● Memory? Did I free that?

The Intricacies of Embedded Communication: LoRa

● LoRa: Long-Range radio, raw bytes to CPU

● Need to implement: routing, security, mesh

● Meshtastic parses them in C++
○ C++: One wrong move... 💣

Clarity in Complexity for LoRa Packets
 def parse(
 <<dest::little-unsigned-32, src::little-unsigned-32, pkt_id::little-unsigned-32,
 hop_start::size(3), via_mqtt::size(1), want_ack::size(1),
 hop_limit::size(3), channel_hash::8, _padding::16, encrypted_data::binary>>) do
 {:ok, %{dest: dest, src: src, packet_id: pkt_id,
 hop_start: hop_start, via_mqtt: int_to_bool(via_mqtt), want_ack: int_to_bool(want_ack),
 hop_limit: hop_limit, channel_hash: channel_hash, encrypted_data: encrypted_data}}
 end

 def parse(_), do: {:error, :failed_meshtastic_parse}

 def decrypt(%{src: src, packet_id: pkt_id, encrypted_data: enc_data} = packet, key) do
iv = <<pkt_id::little-unsigned-64, src::little-unsigned-32, 0::32>>

decrypted = :crypto.crypto_one_time(:aes_128_ctr, key, iv, enc_data, false)
packet
|> Map.put(:data, decrypted)
|> Map.delete(:encrypted_data)

 end

 defp int_to_bool(0), do: false
 defp int_to_bool(1), do: true

Projects like Meshtastic couldn’t leverage these
advantages on such microcontrollers. The
standard BEAM VM wasn’t designed for

environments with only ~500 KiB of available
RAM.

What if we could bring somehow the safety,
concurrency, and productivity of the BEAM

ecosystem to these tiny devices?

AtomVM, A lightweight virtual machine designed to run compiled Erlang and
Elixir code on microcontrollers with limited resources.

● Key Trade-os:
○ Memory First: RAM & Flash are precious

○ Portability: New targets in hours, not days

○ Flexible Requirements: Adaptable core

To the Rescue

Battery powered
CPU: ESP32-S3

Radio: LoRa

Runs
AtomVM

Runs an Elixir app, no native parts
are used
(github.com/bettio/pocketOS/)

Display managed using
https://github.com/atomvm/AtomGL
component.
UI is made with Elixir

Original firmware
in C++

To the Rescue

http://github.com/bettio/pocketOS/
https://github.com/atomvm/AtomGL

● AtomVM powered
● ESP32-C3
● 32-bit RISC V single core @

160 MHz 400 KB of SRAM
● 5μA in deep sleep !

● la machine code is in Erlang
● uses atomvm_esp_adf

component for playing audio
from Erlang code (thanks
Paul)

The Physical Computing Hello World
defmodule Blink do

 @pin 2

 def start() do

GPIO.set_pin_mode(@pin, :output)

loop(:high)

 end

 defp loop(level) do

GPIO.digital_write(@pin, level)

Process.sleep(200)

loop(toggle(level))

 end

 defp toggle(:high), do: :low

 defp toggle(:low), do: :high

end

● Add {:exatomvm, github: "AtomVM/exatomvm", runtime: false}
to mix.exs

● Write Elixir/Erlang (like always!)
● Compile (like always!)
● Pack (mix.atomvm.packbeam -> myapp.avm)
● Flash (e.g. mix atomvm.esp32.flash)

TL;DR: just mix atomvm.esp32.flash

Remember: AtomVM runs unmodified BEAM file, so any language that runs on
the BEAM, will run also on AtomVM.

The AtomVM Workflow

Quick Stats & Nerves Comparison

AtomVM:

● AtomVM, hello world footprint: 512 KiB of flash, 32 KiB of RAM
● Targets smaller MCUs (no Linux / no OS at all)

Nerves:

● Awesome on capable devices (RPi, etc.), such as those running Linux

Big Caveat

● Some features, standard modules or functions are missing (e.g. digraph

module)

● But exatomvm will do its best to tell you if you are using any missing

feature, so you can quickly iterate before flashing your application

New: Erlang Distribution (thanks Paul) and other 40+ additions

Soon:

● Big Integers (WIP, limited to 256-bit)
● Bitstrings (next release!)

Future:

● More devices & peripherals (Zephyr devices, Bluetooth, Zigbee/Thread, etc…)
● Even beer tooling & DevX
● Stable APIs (path to 1.0)

What’s Next

So, we’ve seen how AtomVM brings the power of the BEAM to the
microcontrollers

But the core idea – a portable, lightweight BEAM-like runtime –
opens up fascinating possibilities...

What if we could take this capability beyond just hardware? What
if we could run this same Elixir/Erlang logic in other constrained
environments?

